Jump to content

Silver molybdate

From Wikipedia, the free encyclopedia
Silver molybdate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.962 Edit this at Wikidata
  • InChI=1S/2Ag.Mo.4O/q2*+1;;;;2*-1 checkY
    Key: MHLYOTJKDAAHGI-UHFFFAOYSA-N checkY
  • InChI=1/2Ag.Mo.4O/q2*+1;;;;2*-1/r2Ag.MoO4/c;;2-1(3,4)5/q2*+1;-2
    Key: ^@€×,&#+=+÷×¥× ndnzjsnssi-QWQXGURBAC
  • [Ag+].[Ag+].[O-][Mo]([O-])(=O)=O
Properties
Ag2MoO4
Molar mass 375.67 g/mol
Appearance yellow crystals
Density 6.18 g/cm3, solid
Melting point 483 °C (901 °F; 756 K)
slightly soluble
Structure
cubic
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Silver molybdate (Ag2MoO4), a chemical compound, is a yellow, cubic crystalline substance often used in glass. Its crystals present two types of electronic structure, depending on the pressure conditions to which the crystal is subjected.[1] At room temperature, Ag2MoO4 exhibits a spinel-type cubic structure, known as β-Ag2MoO4, which is more stable in nature. However, when exposed to high hydrostatic pressure, the tetragonal α-Ag2MoO4 forms as a metastable phase.[2]

Synthesis and properties

[edit]

Research published in 2015[3] reported the formation of α-Ag2MoO4 by solution-phase precipitation under ambient conditions, using 3-bis(2-pyridyl)pyrazine (dpp) as a doping agent. The influence of the pH of the starting solution on the growth and formation processes of distinct heterostructures (brooms, flowers and rods) was investigated by Singh et al.[4] and Fodjo et al.,[5] in which sodium borohydride was employed to induce the reduction of silver nanoparticles on the surface of Ag2MoO4 crystals in order to enhance Raman scattering. In other studies, Ag-Ag2MoO4 composites prepared by microwave-assisted hydrothermal synthesis presented interesting photocatalytic activity for the degradation of rhodamine B under visible light.[6] In addition, Ag2MoO4 mixed with graphite acts as a good lubricant for Ni-based composites, improving the tribological properties of this system.[7] Different synthetic methods have been employed to obtain pure β-Ag2MoO4 crystals, including solid-state reaction or oxide mixture at high temperature,[8] melt-quenching,[9] and Czochralski growth.[10] Particularly, high temperatures, long processing times, and/or sophisticated equipment are necessary in these synthetic routes. Moreover, the final products may be composed of irregular particle shapes with nonhomogeneous size distribution as well as contain the presence of secondary phases. In recent years, pure β-Ag2MoO4 crystals have been synthesized by co-precipitation,[citation needed] microwave-assisted hydrothermal synthesis,[11] a dynamic template route using polymerization of acrylamide assisted templates,[12] and an impregnation/calcination method.[13]

In 2015, the literature reported the formation of β-Ag2MoO4 crystals using different chemical solvents in the reaction medium. These β-Ag2MoO4 microcrystals were synthesized by the precipitation method, employing several polar solvents: deionized water (H2O), methanol (CH4O), ethanol (C2H6O), 1-propanol (C3H8O) and 1-butanol (C4H10O) at 60 °C for 8 h. X-ray diffraction (XRD), Rietveld refinements and field emission scanning electron microscopy (FESEM) were employed in structural and morphological characterizations.[14] Moreover, some researchers have investigated new ways to improve the photocatalytic properties of β–Ag2MoO4 crystals through hydrothermal processing at different temperatures (100, 120, 140 and 160 °C) for 2 h and replacement of Ag atoms by Zn to formation of silver zinc molybdate [β–(Ag2−2xZnx)MoO4] microcrystals by a sonochemical method at 30 °C for 3 h. These new crystals were able to degrade the organic cationic dye rhodamine B[15] and the anionic dye Remazol Brilliant Violet 5R[16]

References

[edit]
  1. ^ Arora, A. K.; Nithya, R.; Misra, Sunasira; Yagi, Takehiko (2012-12-01). "Behavior of silver molybdate at high-pressure". Journal of Solid State Chemistry. 196: 391–397. Bibcode:2012JSSCh.196..391A. doi:10.1016/j.jssc.2012.07.003.
  2. ^ Beltrán, Armando; Gracia, Lourdes; Longo, Elson; Andrés, Juan (2014-02-20). "First-Principles Study of Pressure-Induced Phase Transitions and Electronic Properties of Ag2MoO4". The Journal of Physical Chemistry C. 118 (7): 3724–3732. doi:10.1021/jp4118024. ISSN 1932-7447.
  3. ^ Ng, Choon Hwee Bernard; Fan, Wai Yip (2015-06-03). "Uncovering Metastable α-Ag2MoO4 Phase Under Ambient Conditions. Overcoming High Pressures by 2,3-Bis(2-pyridyl)pyrazine Doping". Crystal Growth & Design. 15 (6): 3032–3037. doi:10.1021/acs.cgd.5b00455. ISSN 1528-7483.
  4. ^ Singh, D. P.; Sirota, B.; Talpatra, S.; Kohli, P.; Rebholz, C.; Aouadi, S. M. (2012-03-09). "Broom-like and flower-like heterostructures of silver molybdate through pH controlled self assembly". Journal of Nanoparticle Research. 14 (4): 781. Bibcode:2012JNR....14..781S. doi:10.1007/s11051-012-0781-0. hdl:10533/128243. ISSN 1388-0764. S2CID 96310636.
  5. ^ Fodjo, Essy Kouadio; Li, Da-Wei; Marius, Niamien Paulin; Albert, Trokourey; Long, Yi-Tao (2013-01-23). "Low temperature synthesis and SERS application of silver molybdenum oxides". Journal of Materials Chemistry A. 1 (7): 2558–2566. doi:10.1039/c2ta01018f.
  6. ^ Li, ZhaoQian; Chen, XueTai; Xue, Zi-Ling (2013-02-22). "Microwave-assisted hydrothermal synthesis of cube-like Ag-Ag2MoO4 with visible-light photocatalytic activity". Science China Chemistry. 56 (4): 443–450. doi:10.1007/s11426-013-4845-5. ISSN 1674-7291. S2CID 100948033.
  7. ^ Liu, Eryong; Gao, Yimin; Jia, Junhong; Bai, Yaping (2013-03-24). "Friction and Wear Behaviors of Ni-based Composites Containing Graphite/Ag2MoO4 Lubricants". Tribology Letters. 50 (3): 313–322. doi:10.1007/s11249-013-0131-0. ISSN 1023-8883. S2CID 137297325.
  8. ^ Suthanthiraraj, S. Austin; Premchand, Y. Daniel (2004-05-01). "Molecular structural analysis of 55mol% CuI-45mol% Ag2MoO4 solid electrolyte using XPS and laser raman techniques". Ionics. 10 (3–4): 254–257. doi:10.1007/BF02382825. ISSN 0947-7047. S2CID 95974644.
  9. ^ Rocca, F; Kuzmin, A; Mustarelli, P; Tomasi, C; Magistris, A (1999-06-01). "XANES and EXAFS at Mo K-edge in (AgI)1−x(Ag2MoO4)x glasses and crystals". Solid State Ionics. 121 (1–4): 189–192. doi:10.1016/S0167-2738(98)00546-3.
  10. ^ Brown, Stephen; Marshall, Alison; Hirst, Philip (1993-12-20). "The growth of single crystals of lead molybdate by the Czochralski technique". Materials Science and Engineering: A. 173 (1–2): 23–27. doi:10.1016/0921-5093(93)90179-I.
  11. ^ Gouveia, A. F.; Sczancoski, J. C.; Ferrer, M. M.; Lima, A. S.; Santos, M. R. M. C.; Li, M. Siu; Santos, R. S.; Longo, E.; Cavalcante, L. S. (2014-06-02). "Experimental and Theoretical Investigations of Electronic Structure and Photoluminescence Properties of β-Ag2MoO4 Microcrystals". Inorganic Chemistry. 53 (11): 5589–5599. doi:10.1021/ic500335x. ISSN 0020-1669. PMID 24840935.
  12. ^ Jiang, Hao; Liu, Jin-Ku; Wang, Jian-Dong; Lu, Yi; Yang, Xiao-Hong (2015-07-14). "Thermal perturbation nucleation and growth of silver molybdate nanoclusters by a dynamic template route". CrystEngComm. 17 (29): 5511–5521. doi:10.1039/c5ce00039d.
  13. ^ Zhao, Songjian; Li, Zhen; Qu, Zan; Yan, Naiqiang; Huang, Wenjun; Chen, Wanmiao; Xu, Haomiao (2015-10-15). "Co-benefit of Ag and Mo for the catalytic oxidation of elemental mercury". Fuel. 158: 891–897. doi:10.1016/j.fuel.2015.05.034.
  14. ^ Cunha, F. S.; Sczancoski, J. C.; Nogueira, I. C.; Oliveira, V. G. de; Lustosa, S. M. C.; Longo, E.; Cavalcante, L. S. (2015-10-28). "Structural, morphological and optical investigation of β-Ag 2 MoO 4 microcrystals obtained with different polar solvents". CrystEngComm. 17 (43): 8207–8211. doi:10.1039/c5ce01662b.
  15. ^ Sousa, Giancarlo da Silva; Nobre, Francisco Xavier; Júnior, Edgar lves Araújo; Sambrano, Julio Ricardo; Albuquerque, Anderson dos Reis; Bindá, Rosane dos Santos; Couceiro, Paulo Rogério da Costa; Brito, Walter Ricardo; Cavalcante, Laecio Santos; Santos, Maria Rita Morais; Matos, Jose Milton Elias (20 July 2018). "Hydrothermal synthesis, structural characterization and photocatalytic properties of β--Ag2MoO4 microcrystals: Correlation between experimental and theoretical data". Arabian Journal of Chemistry. 13: 2806–2825. doi:10.1016/j.arabjc.2018.07.011.
  16. ^ Coimbra, D.W.; Cunha, F.S.; Sczancoski, J.C.; de Carvalho, J.F.S.; de Macêdo, F.R.C.; Cavalcante, L.S. (2019). "Structural refinement, morphology and photocatalytic properties of β-(Ag2−2xZnx)MoO4 microcrystals synthesized by the sonochemical method". Journal of Materials Science: Materials in Electronics. 30 (2): 1322–1344. doi:10.1007/s10854-018-0401-6. S2CID 139865569.